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Abstract. Collaborative filtering (CF) based recommendations suffer
from mainstream bias – where mainstream users are favored over niche
users, leading to poor recommendation quality for many long-tail users.
In this paper, we identify two root causes of this mainstream bias: (i)
discrepancy modeling, whereby CF algorithms focus on modeling main-
stream users while neglecting niche users with unique preferences; and (ii)
unsynchronized learning, where niche users require more training epochs
than mainstream users to reach peak performance. Targeting these
causes, we propose a novel end-To-end Adaptive Local Learning (TALL)
framework to provide high-quality recommendations to both mainstream
and niche users. TALL uses a loss-driven Mixture-of-Experts module to
adaptively ensemble experts to provide customized local models for dif-
ferent users. Further, it contains an adaptive weight module to synchro-
nize the learning paces of different users by dynamically adjusting weights
in the loss. Extensive experiments demonstrate the state-of-the-art per-
formance of the proposed model. Code and data are provided at https://
github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-.

Keywords: Recommender Systems · Collaborative Filtering ·
Mainstream Bias · Local Learning · Mixture-of-Experts

1 Introduction

The detrimental effects of algorithmic bias in collaborative filtering (CF) rec-
ommendations have been widely acknowledged [10,11,33,39]. Among these dif-
ferent types of recommendation bias, an especially critical one is Mainstream
Bias (also called “grey-sheep” problem) [4,18,24,39], which refers to the phe-
nomenon that a CF-based algorithm delivers recommendations of higher utility
to users with mainstream interests at the cost of poor recommendation perfor-
mance for users with niche or minority interests. For example, in a social media
platform, mainstream users with interests in prevalent social topics will receive
recommendations of high accuracy, while the system struggles to provide precise
recommendations for niche users who focus on less common, yet equally impor-
tant, topics. This makes the platform deliver unfair services to users with distinct
interests and ultimately deteriorates the long-term prosperity of the platform.
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In this work, we identify two core root causes of such a mainstream bias: the
discrepancy modeling problem and the unsynchronized learning problem.

Discrepancy Modeling Problem: CF algorithms estimate user preferences
based on other users with similar tastes. So, the data from users with different
preferences cannot help (or even play a negative role) in predicting recommen-
dations for a target user. This issue functions bidirectionally – it impacts niche
users, who differ from the majority, and mainstream users affected by the data
from niche users. While prior studies [12,39] have used heuristic-based local
learning to craft customized models for different user types (e.g., mainstream
vs. niche), their efficacy is often bound by the quality of the underlying heuris-
tics. This underscores the need for adaptive approaches that learn to generate
locally customized models for different user types in an end-to-end fashion.

Fig. 1. Validation NDCG@20 during train-
ing for users of varying mainstream levels.
The star marks the epoch when reaching the
peak performance of the subgroup.

Unsynchronized Learning Prob-
lem: Another factor contributing
to mainstream bias is the different
learning paces between mainstream
and niche users. Intuitively, main-
stream users, with abundant training
signals, tend to reach optimal learn-
ing faster. For instance, in Fig. 1, the
high-mainstream subgroup peaks at
around 60 epochs, whereas the low-
mainstream group takes nearly 300
epochs. Training a model for all users
without considering these learning
pace disparities often results in models that cater primarily to mainstream users,
sidelining niche users from reaching their optimal utility. Addressing this requires
a method to synchronize the learning process across users, irrespective of their
mainstreamness.

To address these problems, we propose an end-To-end Adaptive Local
Learning (TALL) framework. To tackle the discrepancy modeling problem affect-
ing both niche and mainstream users, we devise a loss-driven Mixture-of-Experts
structure as the backbone. This structure achieves local learning via an end-to-
end neural network and adaptively assembles expert models using a loss-driven
gate model, offering tailored local models for different users. Further, we develop
an adaptive weight module to dynamically adjust the learning paces by weights
in the loss, ensuring optimal learning for all user types. With these two com-
plementary and adaptive modules, TALL can effectively promote the utility
for niche users while preserving or even elevating the utility for main-
stream users, leading to a significant debiasing effect based on the Rawlsian
Max-Min fairness principle [29].

In sum, our contributions are: (1) we propose a loss-driven Mixture-of-
Experts structure to tackle the discrepancy modeling problem, highlighted by
an adaptive loss-driven gate module for customized local models; (2) we intro-
duce an adaptive weight module to synchronize learning paces, augmented by a
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loss change and a gap mechanism for better debiasing; and (3) Extensive exper-
iments demonstrate TALL’s superior debiasing capabilities compared to leading
alternatives, enhancing utility for niche users by 6.1% over the best baseline with
equal model complexity. Data and code are available at https://github.com/JP-
25/end-To-end-Adaptive-Local-Leanring-TALL-.

2 Preliminaries

Problem Formalization. Given a user set U = {1, 2, . . . , N} consisting of N
users and an item set I = {1, 2, . . . ,M} consisting of M items, we have the
implicit feedback from users to items as the set O = {(u, i)}, where u ∈ U refers
to a user and i ∈ I refers to an item. This feedback set serves as the training
data for training a recommendation model that generates recommendations for
users. Each user u is represented by a binary vector of length M , denoted as
Ou ∈ {0, 1}M . During the evaluation, the model provides a ranked list of K
recommended items for every user. Various ranking evaluation metrics can be
employed, such as NDCG@K and Recall@K [26].

Mainstream Bias. Typically, a recommender system is evaluated by averaging
the utility over all users (such as NDCG@K), which essentially conceals the per-
formance differences across different types of users. Previous work [39] formalizes
the mainstream bias as the recommendation performance difference across users
of different levels of mainstreamness. In this work, we follow the problem setting
of [39] to measure the mainstream level for a user by calculating the average
similarity of the user to all others: the more similar the user is to the majority,
the more mainstream she is.

Debiasing Goal. In terms of the goal of debiasing, while addressing the issues
of discrepancy modeling and unsynchronized learning benefits all user types, it is
inappropriate to expect equalized utility across all users, which possibly encour-
ages decreasing the utility for mainstream groups. Hence, in this work, we follow
the Rawlsian Max-Min fairness principle of distribute justice [29]. To achieve
fairness, this principle aims to maximize the minimum utility of individuals or
groups, ensuring that no one is underserved. So, to counter the mainstream bias,
we aim to improve the recommendation utility of niche users while pre-
serving or even enhancing the performance of mainstream users.

3 End-to-End Adaptive Local Learning

To debias, we propose the end-To-end Adaptive Local Learning (TALL) frame-
work, shown in Fig. 2. To address the discrepancy modeling problem, this frame-
work integrates a loss-driven Mixture-of-Experts module to adaptively pro-
vide customized models for different users by an end-to-end learning procedure.
To address the unsynchronized learning problem, the framework involves an
adaptive weight module to synchronize the learning paces of different users by
adaptively adjusting weights in the objective function.

https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-
https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-
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Fig. 2. The proposed End-to-End Adaptive Local Learning (TALL) framework.

3.1 Loss-Driven Mixture-of-Experts

Mixture-of-Experts. To address the discrepancy modeling problem, prior
works propose the local learning method [12,39] to provide a customized local
model trained by a small collection of local data for each user. However, how to
curate such a local dataset and how to build a local model are completely hand-
crafted in these algorithms, which significantly limits performance. To overcome
this weakness, we adopt a Mixture-of-Experts (MoE) [14] structure as the back-
bone of our proposed framework to implement end-to-end local learning.

In detail, the MoE has two main components: gate and expert models. Specif-
ically, an MoE comprises multiple expert models, each of which is trained to work
for a specific task. For the recommendation problem, we adopt the MultVAE [26]
as the expert model, and each MultVAE-based expert model in the MoE is
responsible to process certain types of users. Then, with these expert models,
for a target user, we rely on the gate model to distribute gate values to different
expert models and generate the prediction for the user by weighted averaging the
outputs of expert models based on gate values. Concretely, given an input user u
with feedback record Ou, the output of the MoE is ̂Ou =

∑ne

k=1 Gk(Ou)Ek(Ou),
where ne is the number of expert models, Gk(Ou) and Ek(Ou) are the k-th value
of the gate model output and the output of the k-th expert model, and we also
have the constraint

∑ne

k=1 Gk(Ou) = 1. The expert and gate models are trained
together by the data in an end-to-end fashion.

Adaptive Loss-Driven Gate. However, the regular gate model, a free-to-
learn feed-forward neural network (i.e., a multilayer perception) within a stan-
dard MoE, is also susceptible to various biases, including mainstream bias. The
gate model is trained by data with more mainstream users and thus focuses
more on how to assign gate values to improve utility for mainstream users while
overlooking niche users. This results in an inability of the regular gate model to
reasonably assign values to different users, especially niche users. Therefore, such
a free-to-learn gate model cannot address the discrepancy modeling problem. A
more precise and unbiased gate mechanism is needed.

A key principle of the gate model is that when we have a set of expert models,
the gate model should assign high values for expert models that are effective for
the target user, and low values for expert models less effective for the target user.
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In this regard, the loss function serves as a high-quality indicator. Specifically,
a high loss value in an expert model for a target user means that this expert
model is not helpful for delivering prediction, and thus, it should not contribute
to the aggregation of the final customized local model, receiving a small gate
value. Conversely, a low loss indicates an effective expert model deserving a
higher gate value. Based on this intuition, we propose the adaptive loss-driven
gate module:

Gk(Ou) = e(L(Ek(Ou)))−1
/ ne∑

t=1

e(L(Et(Ou)))−1
,

where L(Ek(Ou))) is the loss function of the k-th expert model for user u, and
we adopt the multinomial cross-entropy loss function from [26].

This mechanism complies with the principle of allocating high gate values
to more effective expert models and low values to irrelevant expert models. In
practice, we can use the loss function calculated on training data or independent
validation data for the proposed adaptive loss-driven gate mechanism. Due to
that loss on previously unseen validation data is a more precise signal of model
performance, in this work, we adopt the loss function on validation data to
calculate gate values. By this adaptive loss-driven gate mechanism, we can auto-
matically and adaptively assign gate values to expert models, based on which
we generate effective customized models.

3.2 Synchronized Learning via Adaptive Weight

After addressing the discrepancy modeling problem, another core cause of the
mainstream bias is the unsynchronized learning problem – the learning diffi-
culties vary for different users, and users reach the performance peak during
training at different speeds (refer to Fig. 1 for an example). Thus, a method to
synchronize the learning paces of users is desired. We devise an adaptive weight
approach to achieve learning synchronization so that the dilemma of performance
trade-off between mainstream users and niche users can be overcome.

Adaptive Weight. The fundamental motivation of the proposed method lies
in linking the learning status of a user to the loss function of the user at the
current epoch. A high loss for a user signifies ineffective learning by the model,
necessitating more epochs for accurate predictions. Conversely, a low loss indi-
cates successful modeling, requiring less or even no further training. Moreover,
we can use a weight in the loss function to control the learning pace for the user:
a small weight induces slow updating, and a large weight incurs fast updating.
Hence, we propose to synchronize different users by applying weights to the
objective function based on losses users get currently – a user with a high loss
should receive a large weight, and vice versa. We aim to achieve this intuition
by solving the following optimization problem:

max
w

N∑
u=1

wuL(Ou, Ôu) − α‖w‖2
2, s.t.

N∑
u=1

wu = N, w ≥ 0, (1)
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where we aim to maximize the weighted sum of losses of users, in which the
solution will assign high weights to users with large losses; and the regularization
α‖w‖22 is to control the skewness of the weight distribution – a larger α leads to a
more even distribution. One extreme case is when α → +∞, wu = 1 for all users,
and the other extreme case is when α = 0, wu = N for user u with the largest
loss. To solve this optimization problem, a closed-form solution by Lagrange
Multipliers with Karush-Kuhn-Tucker (KKT) conditions can be derived [8]:

w∗
u = max

((
L(Ou, Ôu) − λ

) /
2α, 0

)
, λ =

(
N∑

v=1

L(Ov, Ôv) − 2αN

) /
N. (2)

The proof for this solution can be found in [8]. Finally, with the computed
weights, we can insert them into the original learning objective function of the
framework and train the model by minimizing

∑N
u=1 wuL(Ou, ̂Ou). Similar to

the proposed adaptive loss-driven gate model in Sect. 3.1, here we also rely on
losses calculated by validation data to compute high-quality weights.

Loss Change Mechanism and Gap Mechanism. With the proposed adap-
tive weight approach, we take a solid step toward learning synchronization. How-
ever, two critical issues remain unaddressed. First, the scale of the loss function
is innately different across different users. Usually, mainstream users possess a
lower loss value than niche users because the algorithm can achieve better util-
ity for mainstream users who are easier to model. Due to this scale diversity
problem, computing weights by exact values of the loss can lead to the undesired
situation that mainstream users get overly low weights and niche users get overly
high weights, disturbing the learning process. On the other hand, the loss is not
always stable, especially at the early stage of training. This unstable loss problem
can deteriorate the efficacy of the problem adaptive weight method too.

To tackle the scale diversity problem, instead of directly using the loss, we
propose to use loss change across epochs as the indicator for computing weights.
If we observe the change of loss in recent epochs for a user is significant and
the loss is in a decreasing trend, then we conclude that this user is in a fast
learning stage and needs more epochs to converge. And we want to assign a
high weight to this user. Thus, after each epoch, we will record the loss change
ΔLt

u = Lt−1(u) − Lt(u). Furthermore, to make the indicator more robust to
counter the scale diversity problem, in our experiment, we average recent L loss
change values, denoted as ΔLt

u, to replace the loss in Eq. 1. We can then derive
the solution:

w∗
u = max

((
ΔLt

u − λ
) /

2α, 0
)

, λ =

(
N∑

v=1

ΔLt
v − 2αN

) /
N. (3)

At last, since the losses are excessively unstable at the initial stage of train-
ing and the proposed adaptive weight module heavily relies on the stability of
the loss value, the proposed method cannot perform well at the initial stage of
training. Hence, we propose to have a gap at the beginning for our adaptive
weight method. That is, we do not apply the proposed adaptive weight method
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to the framework at the first T epochs. Since at the early stage of the training,
all users will be at a fast learning status (consider the first 50 epochs in Fig. 1),
as there is no demand for learning synchronization. After T epochs of ordinary
training, when the learning procedure is more stable and the loss is more reliable,
we apply the adaptive weight method to synchronize the learning for different
users. And this time synchronization is desired and plays an important role. The
gap window T is a hyper-parameter and needs to be predefined.

4 Debiasing Experiments

Table 1. Data statistics.

#users #items density

ML1M 6,040 3,706 4.46%

Yelp 20,001 7,643 0.32%

CDs & Vinyl 12,023 8,050 0.32%

In this section, we present a comprehen-
sive set of experiments to highlight the
strong debiasing performance of the proposed
method, validate the effectiveness of various
model components, assess the impact of the
proposed adaptive weight module, and exam-
ine the impact of hyper-parameters.

4.1 Experimental Setup

Data and Metric. Table 1 summarizes statistics of datasets used in this paper.
We use three public datasets for the experiments: ML1M [19], Yelp [1], and
Amazon CDs and Vinyl [28]. For each dataset, we consider the ratings or
reviews as positive feedback from users to items. Then, following the same eval-
uation scheme from [39], for each dataset, we uniformly randomly divide it into
training, validation, and testing sets in the ratio of 70%, 10%, and 20%. Next, we
calculate the mainstream scores of users. Specifically, for a user u, the mainstream
score is calculated as MSu =

∑

v∈U\u Sim(Ou,Ov)/(N −1), where Sim(Ou,Ov)
is the user-user similarity between users u and v. The similarity is computed by
Jaccard similarity between the implicit feedback record Ou and Ov. Then, we sort
users based on calculated mainstream scores in non-descending order and divide
them into five subgroups with equal sizes. In the result, we denote the first 20%
of users with the lowest mainstream scores as users of ‘low’ mainstream level, the
subgroup of 20%-40% users as ‘med-low’ mainstream level, and so on for 40%-60%
(‘medium’), 60%-80% (‘med-high’), and 80%-100% (‘high’) users. Last, we report
and compare the average NDCG@20 for each subgroup to show the mainstream
bias. We do not divide users by cutting at specific mainstream scores because this
could lead to groups with extremely small numbers of users, deteriorating the reli-
ability of reported utility and bias evaluation.

Considering the Rawlsian Max-Min fairness principle [29], the goal of debi-
asing is to promote the average NDCG@20 for subgroups with low
mainstream scores while preserving or even improving the utility for
subgroups with high mainstream scores at the same time. Hence, we
also anticipate an increase in the overall NDCG@20 of the model.
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Table 2. Comparing TALL with SOTA debiasing baselines on 3 datasets.

ML1M Yelp CDs & Vinyl

NDCG
@20

Subgroups of mainstream levels NDCG
@20

Subgroups of mainstream levels NDCG
@20

Subgroups of mainstream levels

L ML M MH H L ML M MH H L ML M MH H

MultVAE .3260 .2354 .2764 .2986 .3652 .4546 .0877 .0686 .0710 .0733 .0901 .1355 .1367 .1100 .1316 .1366 .1457 .1596

WL .3278 .2448 .2801 .2970 .3639 .4532 .0870 .0700 .0708 .0720 .0888 .1332 .1361 .1133 .1334 .1361 .1441 .1534

EnLFT .3341 .2586 .2875 .3025 .3661 .4556 .0887 .0697 .0715 .0740 .0915 .1369 .1453 .1230 .1387 .1423 .1561 .1666

LOCA .3308 .2551 .2780 .2972 .3622 .4617 .0942 .0723 .0758 .0764 .0970 .1494 .1573 .1341 .1510 .1556 .1665 .1795

LFT .3416 .2707 .2918 .3072 .3727 .4657 .0927 .0740 .0738 .0768 .0956 .1432 .1557 .1343 .1481 .1515 .1678 .1770

TALL .3456 .2746 .2903 .3112 .3784 .4734 .0992 .0772 .0803 .0826 .1056 .1505 .1700 .1392 .1599 .1652 .1844 .2013

ΔMultV AE(%) 6.01 16.65 5.03 4.22 3.61 4.14 13.11 12.54 13.1 12.69 17.2 11.07 24.36 26.54 21.5 20.94 26.56 26.13

ΔLFT (%) 1.17 1.44 -0.51 1.30 1.53 1.65 7.01 4.32 8.81 7.55 10.46 5.10 9.18 3.65 7.97 9.04 9.89 13.73

ΔLOCA(%) 4.47 7.64 4.42 4.71 4.47 2.53 5.31 6.78 5.94 8.12 8.87 0.74 8.07 3.80 5.89 6.17 10.75 12.14

L: low, ML: med-low, M: medium, MH: med-high, H: high

Baselines. In the experiments, we compare the proposed TALL with MultVAE
and four state-of-art debiasing methods: (1) MultVAE [26] is the widely used
vanilla recommendation model without debiasing. (2) WL [39] is a global method
designed to assign more weights to niche users in the training loss of MultVAE.
(3) LOCA [12] is a local learning model that trains multiple anchor models
corresponding to identified anchor users and aggregates the outputs from anchor
models based on the similarity between the target user and anchor users. (4)
LFT [39] is the SOTA local learning model that first trains a global model with
all data and then fine-tunes a customized local model for each user using their
local data for the target user. (5) EnLFT [39] is the ensembled version of LFT,
which is similar to LOCA but trains the anchor models by the approach of LFT.

To fairly compare the performance of different baselines and our proposed
model, for all four debiasing baselines and our proposed TALL, we adopt the
MultVAE as the base model (or the expert model in TALL). LOCA, EnLFT,
and TALL have the same complexity with a fixed number of MultVAE in them.
And owing to the end-to-end training paradigm, TALL takes less training time
than other local learning baselines. Last, LFT has the largest complexity, which
has an independent MultVAE for each user.

Reproducibility. All models are implemented in PyTorch and optimized by the
Adam algorithm [20]. For the baseline MultVAE and the MultVAE component
in other models, we set one hidden layer of size 100. And we maintain the number
of local models at 100 for LOCA, EnLFT, and TALL for all datasets to ensure a
fair comparison. All other hyper-parameters are grid searched by the validation
sets. All code and data can be found at https://github.com/JP-25/end-To-end-
Adaptive-Local-Leanring-TALL-.

4.2 Debiasing Performance

First, we conduct a comparative analysis to show the effectiveness of the
proposed TALL. In Table 2, we evaluate the overall NDCG@20 and average
NDCG@20 for five user subgroups with varying mainstream levels for all meth-
ods and datasets. The best results of each metric and subgroup for all datasets
are marked in bold, and the improvement rate of the proposed TALL over the

https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-
https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-
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best baseline MultVAE, LOCA, and LFT is exhibited as well. The user sub-
groups are categorized based on their mainstream scores.

TALL vs. MultVAE & WL. First, we can observe that the utilities for users
of all five subgroups are greatly promoted by our proposed TALL compared to
the widely used model MultVAE. Moreover, we can see that although the global
debiasing method WL can alleviate the mainstream bias to a certain degree
compared to MultVAE, our proposed TALL can produce higher NDCG@20 for
all five user subgroups than WL, depicting that the proposed TALL exhibits a
more outstanding debiasing ability over WL.

TALL vs. EnLFT & LOCA. Hence, we next have a fair comparison between
models of the same complexity and compare directly across local learning meth-
ods. From Table 2, we observe that LOCA and EnLFT are more effective in
mitigating the mainstream bias than WL, as they remarkably enhance utility
across all five groups on all datasets. Meanwhile, our TALL significantly outper-
forms LOCA and EnLFT across all user groups and datasets. The improvement
is especially prominent for niche users: TALL improves NDCG@20 of the ‘low’
user group by 6.07% on average over LOCA and 10% over EnLFT. This shows
that with the same model complexity, the proposed end-to-end adaptive local
learning model is more effective than heuristic-based local learning models.

TALL vs. LFT. Last, we compare TALL with the state-of-the-art local learning
baseline LFT, which is heavily computationally intense and time-consuming.
But due to its special design that every user gets their own customized model
trained by their local data, LFT can effectively address the discrepancy modeling
problem. From Table 2, we observe that, for most of the time, LFT achieves the
best performance for niche users among all baselines. And LFT can perform
especially effectively for dense datasets (i.e., ML1M). In fact, given that the
model complexity of LFT is much higher than TALL, it is unfair to compare
them only based on recommendation accuracy (i.e., NDCG). For example, in
the ML1M dataset, our TALL contains 100 expert models (MultVAE), while
LFT trains 6,040 (#users) models separately, which is over 60 times larger than
TALL. Although it is not a fair comparison, we can still observe in Table 2 that
TALL can outperform LFT in most cases. Especially for the two sparse datasets
Yelp and CDs&Vinyl, TALL produces significantly higher utilities for all types
of users. This demonstrates the efficacy and necessity of an end-to-end local
learning method compared to a heuristic-based one.

In sum, from Table 2, we see that for all datasets, the proposed TALL pro-
duces the greatest NDCG@20 improvement for each subgroup of different main-
stream levels and leads to the state-of-the-art overall model performance. TALL
can outperform baselines with lower and the same model complexity, and it can
even outperform the baseline model that is way more complex than it.

4.3 Ablation Study

Next, we aim to investigate the effectiveness of different components in the pro-
posed framework, including the proposed adaptive loss-driven gate module, the
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Table 3. Ablation study on the adaptive loss-driven gate.

NDCG@20 Subgroups of different mainstream levels

L ML M MH H

MultVAE 0.3260 0.2354 0.2764 0.2986 0.3652 0.4546

MoE 0.3230 0.2513 0.2668 0.2895 0.3519 0.4553

LMoE 0.3401 0.2714 0.2893 0.3066 0.3736 0.4594

L: low, ML: med-low, M: medium, MH: med-high, H: high

Table 4. Ablation study on the adaptive weight module, gap mechanism, and loss
change mechanism.

NDCG@20 Subgroups of different mainstream levels

L ML M MH H

LMoE 0.3401 0.2714 0.2893 0.3066 0.3736 0.4594

LMoE + LC 0.3371 0.2566 0.2835 0.3075 0.3724 0.4654

LMoE + gap + L 0.3396 0.2681 0.2878 0.3065 0.3741 0.4616

TALL (LMoE + gap + LC) 0.3456 0.2746 0.2903 0.3112 0.3784 0.4734

L: low, ML: med-low, M: medium, MH: med-high, H: high

adaptive weight module, the gap mechanism in the adaptive weight module, and
the loss change mechanism in the adaptive weight module.

Adaptive Loss-Driven Gate. To verify the effectiveness of the proposed adap-
tive loss-driven gate module in the proposed TALL, we compare the MoE com-
ponent with the adaptive loss-driven gate (denoted as LMoE, which is the TALL
model without the adaptive weight module) to a conventional MoE (denoted as
MoE) with the standard multilayer perceptron (MLP) as the gate learning from
the dataset. By comparing LMoE and MoE, we can justify the effect of the pro-
posed adaptive loss-driven gate. The results are present in Table 3, where we
also include the result of MultVAE as a baseline. From the table, we can observe
that MoE produces better performance for niche users compared to MultVAE
but worse results for other users. This is caused by the MLP-based gate model in
MoE, which cannot precisely allocate gate values to expert models to ensemble
a strong customized model for different users. Conversely, we can see that even
without the adaptive weight module, the LMoE can deliver greatly higher util-
ities for all types of users compared to MultVAE and MoE, showing the strong
capability of the proposed adaptive loss-driven gate module in distributing gate
values across expert models. And this result also demonstrates the efficacy of
the proposed LMoE module in TALL in terms of addressing the discrepancy
modeling problem.

Adaptive Weight. To address the unsynchronized learning problem, we
develop the adaptive weight module to dynamically adjust the learning paces
of different users. To verify the effectiveness of the proposed adaptive weight, we
compare the complete TALL algorithm (with both the loss-driven MoE mod-
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ule and the adaptive weight module) to the loss-driven MoE module (LMoE).
The results on ML1M are shown in Table 4, from which we can see that TALL
outperforms LMoE for all types of users, manifesting the effectiveness of the pro-
posed adaptive weight method. Furthermore, we explore the effectiveness of two
special mechanisms, the gap mechanism and the loss change mechanism within
the adaptive weight module, in the subsequent sections.

Gap Mechanism. To avoid the unstable loss problem at the initial training
stage, we propose to have a gap for the adaptive weight method, i.e., we wait
for a certain number of epochs at the initial training stage until the loss is
stable and then apply the adaptive weight method. To verify the effectiveness of
such a gap strategy, we compare the complete TALL (with a full version of the
adaptive weight module including both the gap mechanism and the loss change
mechanism) to a variation of TALL with the adaptive weight module without the
gap mechanism. The comparison is presented in Table 4 as LMoE+LC vs. TALL.
We can observe that the gap mechanism does have a significant influence on the
model performance that the model with the gap mechanism (TALL) delivers
better utilities for all types of users than the model without the gap mechanism
(LMoE+LC).

Loss Change Mechanism. Last, we aim to verify the effectiveness of the
proposed loss change mechanism in the adaptive weight module. The goal of
loss change is to counter the scale diversity problem when applying the adaptive
weight module. Here, we compare the complete TALL (with a full version of the
adaptive weight module including both the gap mechanism and the loss change
mechanism) to a variation of TALL (LMoE+gap+L) with the adaptive weight
module that uses original loss as introduced in Sect. 3.2. From the comparison
result shown in Table 4, we see that the model using loss change (TALL) performs
better than the model using original loss for calculating weights (LMoE+gap+L).
TALL outperforms LMoE+gap+L for all types of users.

In sum, by a series of comparative analyses, we show that the proposed
adaptive loss-driven gate module, adaptive weight module, the gap mechanism in
adaptive weight, and the loss change mechanism in adaptive weight are effective
and play imperative roles in the proposed TALL framework.

4.4 Effect of the Adaptive Weight Module

Fig. 3. Weights assignment across different
types of users.

Last, we turn our attention to inves-
tigating the effect of the adaptive
weight module, studying how it syn-
chronizes the learning paces of dif-
ferent users. We run TALL on the
ML1M dataset and present the aver-
age weights for the five subgroups
with the gap window (#gap = 40)
in Fig. 3. It can be observed that
the adaptive weight module assigns
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weights dynamically to different types of users to synchronize their learning
paces. Initially, mainstream users receive higher weights because they are easier
to learn and have a higher upper bound of performance than niche users. Then,
when mainstream users reach the peak, the model switches the attention to niche
users who are more difficult to learn, gradually increasing the weights for ‘low’,
‘med-low’, and ‘medium’ users until the end of the training procedure. However,
‘med-high’ and ‘high’ users, approaching converged, need a slower learning pace
to avoid overfitting, leading to a decrease in the weights. Figure 3 illuminates
the effectiveness and dynamic nature of the proposed adaptive weight module
in synchronizing the learning procedures for different types of users.

4.5 Hyper-Parameter Study

Additionally, we have also conducted a comprehensive hyper-parameter study
investigating the impacts of three hyper-parameters in TALL: (1) the gap win-
dow in the adaptive weight module; (2) α in the adaptive weight module; and
(3) the number of experts. The complete results are in https://github.com/JP-
25/end-To-end-Adaptive-Local-Leanring-TALL-/blob/main/Hyperparameter S
tudy.pdf.

5 Related Work

Fairness and bias issues in recommender systems have attracted increasing atten-
tion recently. Popularity bias [2,3,9,34,37,38], exposure bias [5,21,30,31], and
item fairness [6,7,11,17,27,35] exemplify significant item-side biases. Besides
prior works mainly focusing on the item perspective, several research studies
have explored user biases, analyzing utility differences among diverse user groups
based on user demographic attributes, like age or gender [10,15,16,25,32,33,36].
For instance, Ekstrand et al. [15] empirically investigated multiple recommenda-
tion models and demonstrated utility differences across user demographic groups.
Schedl et al. [32] examined music preference differences among user age groups,
revealing variations in recommendation performance. To address these issues,
Fu et al. [16] proposed to leverage rich information from knowledge graphs, Li
et al. [25] developed a re-ranking to narrow the utility gap between different
user groups, and Chen et al. [10] implemented data augmentation by generating
“fake” data to achieve a balanced distribution.

However, demographic attributes may not comprehensively capture user
interests and behaviors. Unlike the aforementioned works focusing on bias anal-
ysis based on demographic groups, mainstream bias poses a critical challenge
in recommender systems. Previous works [4,18,24] acknowledge mainstream bias
as the “grey-sheep” problem, where “grey-sheep users” with niche interests lead
to challenges in finding similar peers and result in poor recommendations. How-
ever, they do not propose robust bias measurements and debiasing methods. A
more aligned study with better mainstream bias evaluations to this paper is [39],
which also addresses mainstream bias and enhances utility for niche users using

https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-/blob/main/Hyperparameter_Study.pdf
https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-/blob/main/Hyperparameter_Study.pdf
https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-/blob/main/Hyperparameter_Study.pdf
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global and local methods. Prior existing local methods [12,13,22,23,39] and
global methods [39] can mitigate the bias to some degree by improving the
utility for niche users. The recently proposed Local Fine Tuning (LFT) [39]
and local collaborative autoencoder (LOCA) [12] produce state-of-the-art per-
formance by employing multiple multinomial variational autoencoders (Mult-
VAE) [26] as base models and generating customized local models to capture
special patterns of different types of user. Nonetheless, prior methods have a
key limitation: their reliance on heuristics impacts performance, necessitating
meticulous hyper-parameters tuning by practitioners. Thus, the performance of
these prior heuristic-based local learning methods is limited. This work targets
the mainstream bias problem by proposing an end-to-end adaptive local learning
framework to automatically and adaptively learn customized local models for dif-
ferent users, overcoming the limitations of heuristic-based methods to mitigate
mainstream bias.

6 Conclusion

In this study, we aim to address the mainstream bias in recommender systems
that niche users who possess special and minority interests receive overly low
utility from recommendation models. We identify two root causes of this bias:
the discrepancy modeling problem and the unsynchronized learning problem.
Toward debiasing, we devise an end-to-end adaptive local learning framework:
we first propose a loss-driven Mixture-of-Experts module to counteract the dis-
crepancy modeling problem, and then we develop an adaptive weight module
to fight against the unsynchronized learning problem. Extensive experiments
show the outstanding performance of our proposed method on both niche and
mainstream users and overall performance compared to SOTA alternatives.
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