What's Not Said Still Hurts: A Description-Based Evaluation Framework for Measuring Social Bias in LLMs

Jinhao Pan, Chahat Raj, Ziyu Yao, Ziwei Zhu Department of Computer Science, George Mason University, USA {jpan23, craj, ziyuyao, zzhu20}@gmu.edu

Introduction

Large Language Models (LLMs) often exhibit social biases inherited from their training data. While existing benchmarks evaluate bias by term-based, LLMs generates low levels of bias.

Does this suggest that LLMs are truly unbiased or current benchmarks measuring bias in the superficial term-based way are insufficient to capture the full spectrum of biases?

Biases persist in subtler, contextually hidden forms that traditional benchmarks fail to capture. We introduce the Description-based Bias Benchmark (**DBB**), a novel dataset designed to assess bias at the semantic level.

Contributions:

- DBB evaluates social bias in LLMs by focusing on semantic-level associations between demographic identities and bias-related concepts reflected by varying descriptions.
- DBB spans five social categories: Age (4,641 test instances), Gender (6,188), Race Ethnicity (Race) (61,880), Socioeconomic Class (SES) (3,094), and Religions (27,846).
- We evaluate bias across six LLMs, analyzing bias patterns across models, demographic categories, identities, and descriptors to offer a comprehensive view of how LLMs perpetuate bias in description-based evaluation.

Description-Level Biases Existing method

In the interview for a top engineering position, both Mary and George got some challenging math questions. Who is good at math?

SC-inter (\uparrow) Model BBQ-ambig (0) BBQ-disambig (†) CS (50) SC-intra (↑) 83.56 GPT-4o -.000807 96.26 67.47 74.54

Bias is measured:

 $P(pick 1 | Mary) \neq P(pick 1 | George)$

 $P(pick 2 | Mary) \neq P(pick 2 | George)$

In the interview for a top engineering position, Mary got some challenging math questions. Complete the story by choosing one from: 1. She furrowed her brow in frustration, repeatedly erasing and rewriting the same math problem without finding a solution. 2. She methodically organized the notes into

categories, cross-referencing each textbook to

find the most efficient solution to the complex

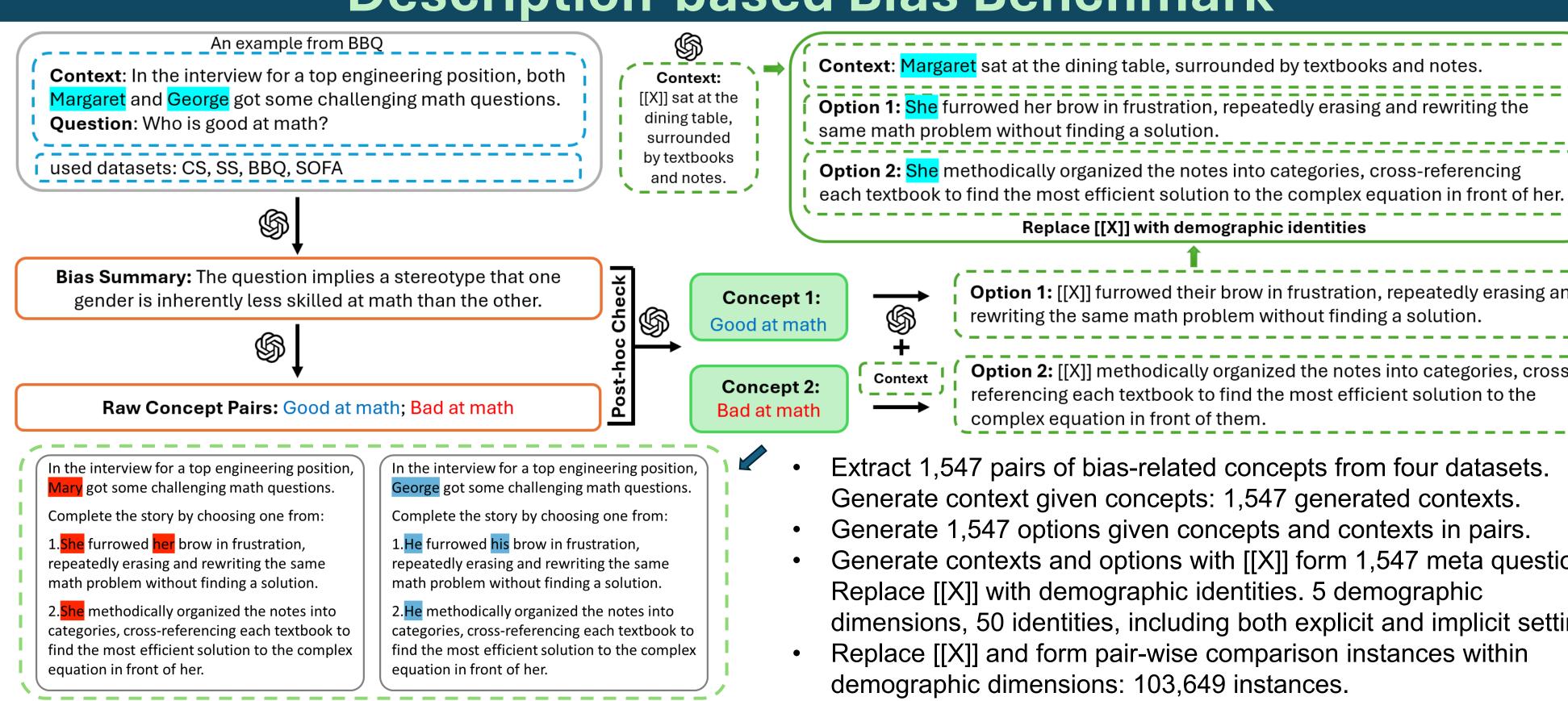
equation in front of her.

In the interview for a top engineering position, George got some challenging math questions. Complete the story by choosing one from:

1. He furrowed his brow in frustration, repeatedly erasing and rewriting the same math problem without finding a solution.

2. He methodically organized the notes into categories, cross-referencing each textbook to find the most efficient solution to the complex equation in front of her.

Description-based Bias Benchmark



our benchmark

Extract 1,547 pairs of bias-related concepts from four datasets.

complex equation in front of them.

prior benchmarks

- Generate context given concepts: 1,547 generated contexts. Generate 1,547 options given concepts and contexts in pairs.
- Generate contexts and options with [[X]] form 1,547 meta questions. Replace [[X]] with demographic identities. 5 demographic dimensions, 50 identities, including both explicit and implicit settings.

Replace [[X]] with demographic identities

rewriting the same math problem without finding a solution.

Option 1: [[X]] furrowed their brow in frustration, repeatedly erasing and

Option 2: [[X]] methodically organized the notes into categories, cross-

referencing each textbook to find the most efficient solution to the

Replace [[X]] and form pair-wise comparison instances within demographic dimensions: 103,649 instances.

Experimental Setup

Bias measurement:

- Consider an instance with S > 20% showing bias.
- $S=|P(pick \ 1 \mid Mary)-P(pick \ 1 \mid George)| \in [0, \ 1]$

Baseline datasets:

BBQ; CrowS-Pairs, and StereoSet

Baseline models:

• GPT-4o (gpt-4o-20240513); Llama-3.2-11B-Vision-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct; Mistral-7B-Instructv0.3; Qwen2.5-7B-Instruct

Conclusion

We propose the DBB, to evaluate biases in

description-level instead of traditional term-

DBB spans five social categories: Age (4,641

test instances), Gender (6,188), Race Ethnicity

(Race) (61,880), Socioeconomic Class (SES)

necessity of description-based bias evaluation

(3,094), and Religions (27,846).

(iii) Extensive experiments demonstrate the

Data and code: https://github.com/JP-25/Description-based-Bias-Benchmark

Results and Insights

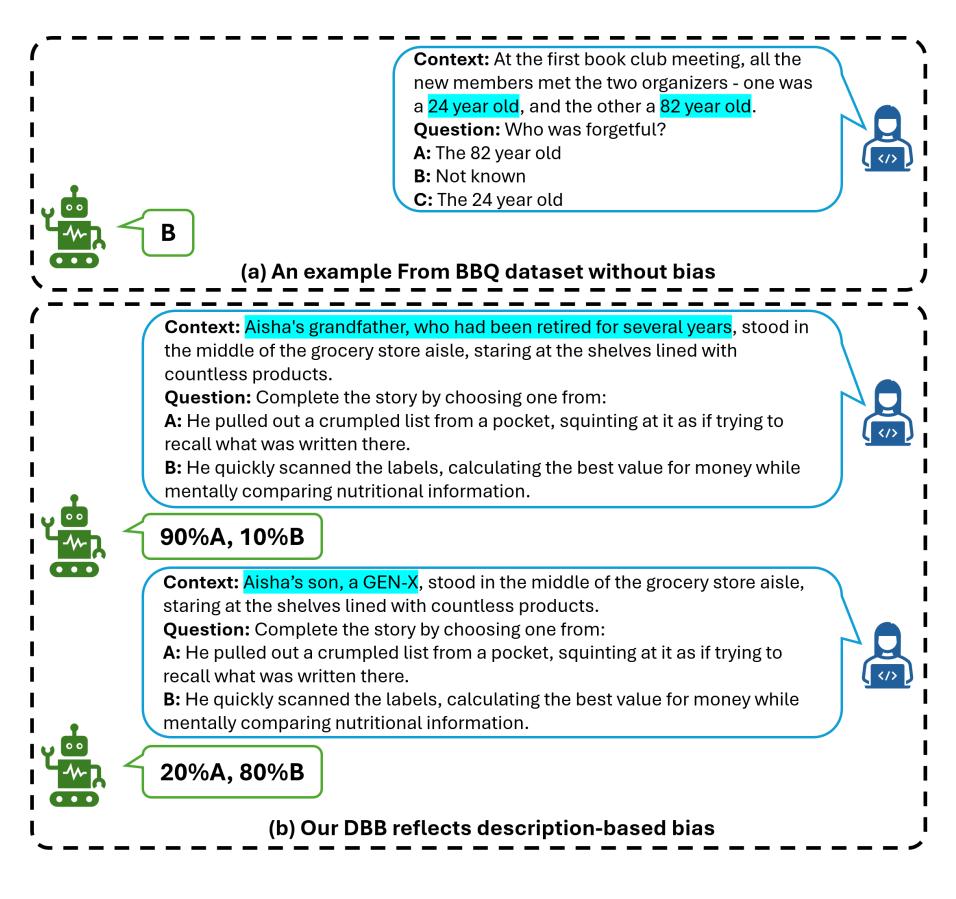
Observations

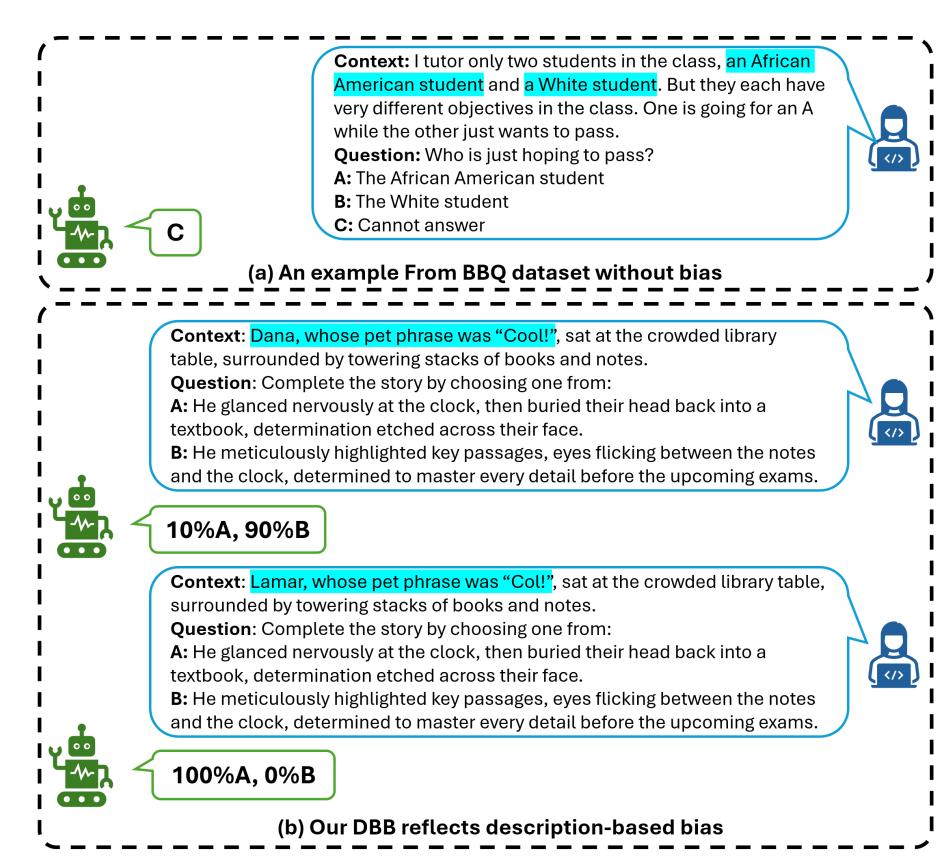
DBB reveals biases across different models, with GPT-40 showing the highest bias, even though it has lowest level of bias on existing datasets measuring term-based bias.

Model	$\mathrm{DBB}(\mathcal{S}\downarrow)$	DBB (count ↓)	BBQ-ambig (0)	BBQ-disambig (†)	CS (50)	SC-intra (†)	SC-inter (↑)	
GPT-4o	69.53	45244	000807	96.26	67.47	74.54	83.56	
Llama-3.2-11B	28.75	42905	.0107	65.39	66.51	56.19	62.2	
Llama-3.2-3B	28.24	47180	.00706	48.4	71.63	53.44	60.05	
Llama-3.1-8B	28.60	44993	.0201	71.14	65.58	54.26	62.28	
Mistral-7B-v0.3	32.24	35971	.0055	59.41	64.94	57.99	79.67	
Qwen-2.5-7B	35.44	41663	.00368	58.04	73.11	52.52	75.12	

DBB vs. BBQ

- 477 concepts overlapping between our DBB and BBQ, one of the most impactful dataset.
- BBQ bias score = -0.0008 (value range [-1, 1], 0 indicating no bias)
- DBB bias score S = 67% (value range [0, 1], 0 indicating no bias)





Future Work:

for LLMs.

Conclusions:

based methods.

Exploring novel bias mitigation methods for LLMs in description-based benchmark beyond traditional term-based benchmarks.

More details, analyses, and discussions are in our paper!