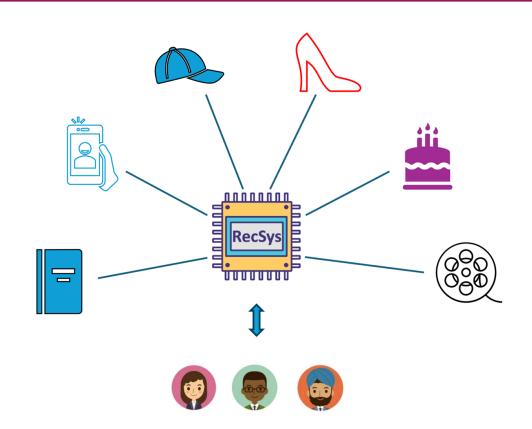


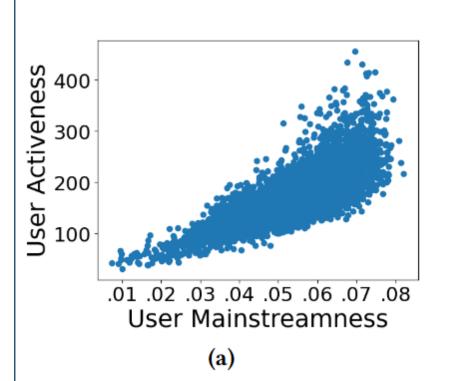
Combating Heterogeneous Model Biases in Recommendations via Boosting

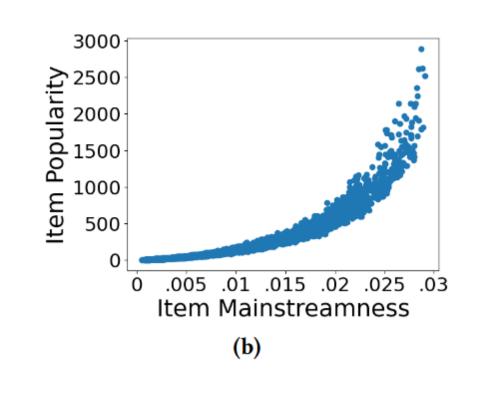
Jinhao Pan¹, James Caverlee² and Ziwei Zhu¹

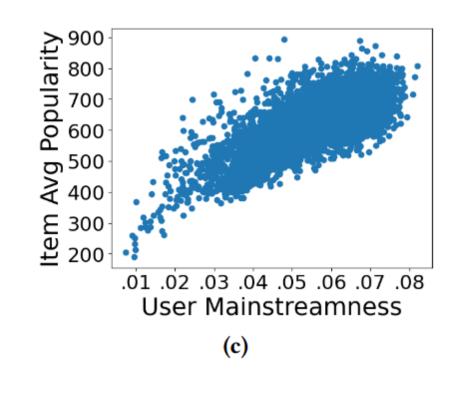

¹Department of Computer Science, George Mason University, USA ²Department of Computer Science and Engineering, Texas A&M University, USA {jpan23, zzhu20}@gmu.edu, caverlee@tamu.edu

Introduction

Collaborative Filtering (CF) based recommenders often exhibit model biases. Prior research approaches these biases as isolated and standalone issues, ignoring their interconnected nature and developing separate methods, thereby compromising the specialized debiasing efforts. our goal is to create a holistic debiasing framework capable of addressing heterogeneous model biases simultaneously.


Are different users served equally by RecSys? Are different items recommended equally by RecSys?




Contributions:

- Propose a boosting-based collaborative filtering framework (CFBoost) that tailors submodels for each user and item to mitigate heterogeneous model biases.
- Our theoretical analysis demonstrates that the model achieves an exponentially decreasing upper bound on the training loss for any useritem pairs with increasing boosting iterations.
- (iii) Extensive **experiments** show that the CFBoost outperforms state-of-the-art debiasing baselines.

Heterogenous Model Biases & Interconnections

- For four bias dimensions, we sort users/items in a non-descending order by the corresponding score (user mainstreamness/use activeness/item mainstreamness/item popularity) and evenly split them into 5 subgroups to evaluate each bias.
- Goal: Improve recommendation utility for niche/inactive users and niche/unpopular items while preserving utility for mainstream/active users and mainstream/popular items in a holistic method.

- **User Mainstream Bias:** Niche users receive poor recommendation services.
- **User Activeness Bias:** Inactive users receive poor recommendation services.
- Item Mainstream Bias: Niche items are poorly recommended to audiences
- **Item Popularity Bias:** Niche items are poorly recommended to audiences.

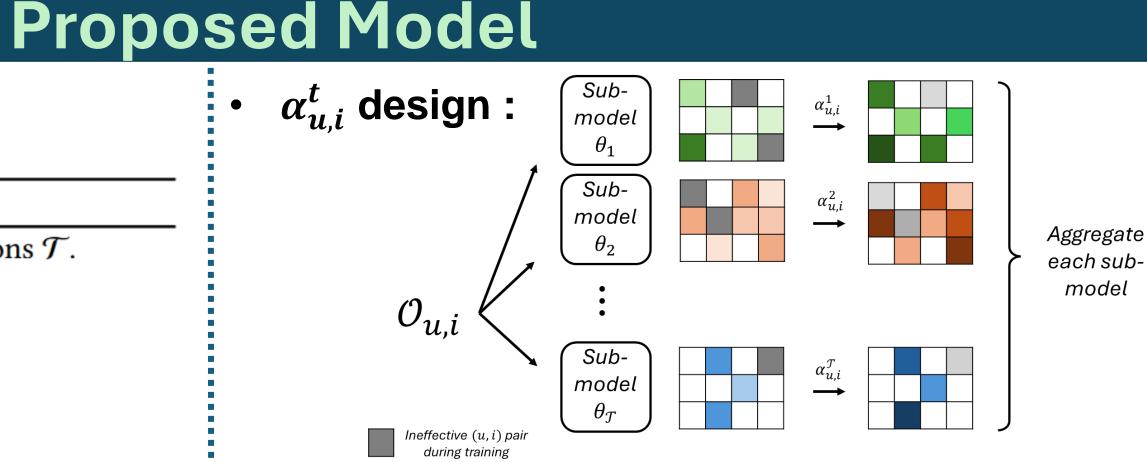
Algorithm:

Algorithm 1: CFBoost **Input** : $O = \{(u, i)\}$; number of boosting iterations \mathcal{T} . Output: Final Prediction: O

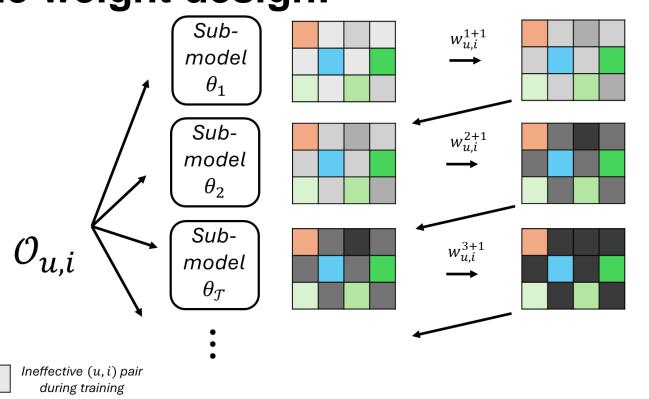
1 Initialize: $weights(w^1) = 1/(M * N)$

2 for $t \leftarrow 1$ to \mathcal{T} do

Train sub-model θ_t with weights (w^t) : $\mathcal{L}^t = \sum_{(u,i)\in O} w_{u,i}^t \times L_{u,i}^t / |O|$


Calculate $\mathcal{L}_{u,i}^t$ for each user-item pair;

Calculate the ensemble weight of each user-item pair: $\alpha_{u,i}^t = \ln \frac{1}{f^t}$


Calculate weight of each user-item pair for the next iteration: $w_{u,i}^{t+1} = w_{u,i}^t \times e^{\alpha_{u,i}^t \mathcal{L}_{u,i}^t} / Z_t;$

7 end for

8 Compute the final prediction: $\widehat{O}_{u,i} = \sum_{t=1}^{\mathcal{T}} \alpha_{u,i}^t \times \widehat{O}_{u,i}^t$.

Sample weight design:

Experiment Setup

Three Datasets:

	#users	#items	density
KuaiRec	5,765	5,800	4.39%
Yelp	20,001	7,643	0.32%
CDs & Vinyl	12,023	8,050	0.32%

Evaluation Metrics:

NDCG@K (user-oriented metrics), MDG@K (itemoriented metrics)

Baselines:

MF, BPR, MultVAE (conventional algorithms without debiasing), LOCA, LFT, EnLFT (user-side debiasing SOTA), PC, BC Loss, Zero Sum (itemside debiasing SOTA)

Data and code: https://github.com/JP-25/CFBoost

Proposed Model vs. State-of-the-art Models

Observations:

(i) CFBoost mitigates both user-side and item-side biases simultaneously, outperforming bias-unaware models and SOTA user-side/item-side debiasing methods;

(ii) CFBoost has a trade-off between minority and privileged groups with suboptimal utility for the most privileged groups.

Table 1: Comparison across SOTA debiasing baselines and the proposed CFBoost on CDs & Vinyl (user mainstream bias).

	NDCG	Subgroups of user mainstream levels						
	@20	L	ML	M	MH	H		
MF	.1292	.1095	.1171	.1330	.1388	.1474		
BPR	.1055	.0917	.0986	.1112	.1113	.1149		
MultVAE	.1382	.1175	.1244	.1446	.1477	.1570		
LOCA	.1593	.1364	.1479	.1596	.1728	.1799		
EnLFT	.1519	.1252	.1369	.1527	.1657	.1788		
LFT	.1583	.1322	.1430	.1563	.1747	.1851		
PC	.1021	.0884	.0965	.1064	.1078	.1116		
BC Loss	.1360	.1135	.1275	.1429	.1437	.1521		
Zero Sum	.1006	.0843	.0933	.1054	.1075	.1123		
CFAdaBoost	.1660	.1481	.1532	.1681	.1755	.1852		
CFBoost	.1644	.1472	.1541	.1658	.1698	.1851		
$\Delta_{best}(\%)$	3.20	7.88	4.19	3.87	-1.74	0		
Avg $\Delta_{best}(\%)$		2.84						
L: low, ML:	L: low, ML: med-low, M: medium, MH: med-high, H: high							

Table 2: Comparison across SOTA debiasing baselines and the proposed CFBoost on CDs & Vinyl (user activeness bias).

		NDCG	Subgroups of user activeness levels					
		@20	L	\overline{ML}	M	MH	Н	
	MF	.1292	.1101	.1157	.1255	.1358	.1587	
	BPR	.1055	.0962	.1005	.1074	.1053	.1183	
	MultVAE	.1382	.1171	.1245	.1338	.1438	.1721	
	LOCA	.1593	.1331	.1424	.1535	.1675	.2003	
	EnLFT	.1519	.1259	.1304	.1452	.1582	.1995	
	LFT	.1583	.1318	.1396	.1529	.1644	.2027	
	PC	.1021	.0958	.1002	.1049	.1019	.1078	
	BC Loss	.1360	.1184	.1338	.1348	.1422	.1505	
	Zero Sum	.1006	.0880	.0929	.1028	.1021	.1169	
	CFAdaBoost	.1660	.1413	.1506	.1618	.1741	.2024	
	CFBoost	.1644	.1416	.1505	.1637	1785	.1876	
	$\Delta_{best}(\%)$	3.20	6.40	5.71	6.63	6.55	-7.45	
	Avg $\Delta_{best}(\%)$				3.57			
-	- 1	1 1	3.6 1:	3 (T T	11.	1 77 1 .	•	

L: low, ML: med-low, M: medium, MH: med-high, H: high

Conclusion and Future Work

Conclusions:

- Propose the CFBoost, to address a broad spectrum of model biases.
- Theoretical analysis shows that the model can achieve an exponential dropping upper bound on the training loss for any user-item pairs with increasing boosting iterations.
- (iii) Extensive experiments demonstrate the superior performance of our proposed method for both privileged and minority groups compared to SOTA alternatives.

Future Work:

Exploring CFBoost's debiasing efficacy across a broader spectrum of model biases beyond the four studied in this work.

Table 3: Comparison across SOTA debiasing baselines and the proposed CFBoost on CDs & Vinvl (item mainstream bias).

oseu Crboost o		• `						
	MDG	Subgi	Subgroups of item mainstream levels					
	@20	L	ML	M	MH	Н		
MF	.0266	.0206	.0172	.0205	.0276	.0473		
BPR	.0088	.0032	.0018	.0047	.0093	.0252		
MultVAE	.0234	.0096	.0091	.0158	.0272	.0554		
LOCA	.0427	.0305	.0284	.0345	.0472	.0731		
EnLFT	.0433	.0265	.0285	.0350	.0490	.0773		
LFT	.0457	.0259	.0301	.0386	.0527	.0810		
PC	.0143	.0293	.0070	.0063	.0081	.0209		
BC Loss	.0453	.0478	.0381	.0399	.0446	.0561		
Zero Sum	.0083	.0014	.0010	.0027	.0095	.0267		
CFAdaBoost	.0371	.0306	.0249	.0290	.0381	.0629		
CFBoost	.0613	.0482	.0494	.0597	.0674	.0821		
$\Delta_{best}(\%)$	34.14	0.73	29.66	49.35	27.85	1.39		
Avg $\Delta_{best}(\%)$				21.80				

L: low, ML: med-low, M: medium, MH: med-high, H: high

Table 4: Comparison across SOTA debiasing baselines and the proposed CFBoost on CDs & Vinyl (item popularity bias).

osed Crboost on Cbs & villyl (item popularity blas).								
	MDG	Subgroups of item popularity levels						
	@20	L	ML	M	MH	H		
MF	.0266	.0079	.0115	.0165	.0237	.0736		
BPR	.0088	.0005	.0006	.0008	.0016	.0406		
MultVAE	.0234	.0014	.0029	.0065	.0175	.0908		
LOCA	.0427	.0143	.0233	.0281	.0418	.1063		
EnLFT	.0433	.0116	.0202	.0273	.0438	.1135		
LFT	.0457	.0109	.0206	.0319	.0501	.1147		
PC	.0143	.0158	.0088	.0061	.0053	.0355		
BC Loss	.0453	.0242	.0338	.0365	.0458	.0862		
Zero Sum	.0083	.0001	.0002	.0003	.0006	.0409		
CFAdaBoost	.0371	.0138	.0195	.0243	.0324	.0954		
CFBoost	.0613	.0458	.0554	.0590	.0588	.0876		
$\Delta_{best}(\%)$	34.14	89.57	63.98	61.62	17.36	-23.65		
Avg $\Delta_{hest}(\%)$				41.78				

L: low, ML: med-low, M: medium, MH: med-high, H: high